

## RBI is a New Instrument Developed as a Follow-on to CERES Flown on TRMM, EOS, NPP, and JPSS-1



Radiation Budget Instrument

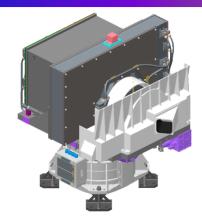
#### Radiation Budget Instrument (RBI)

#### **Partnerships and Teams**

#### NASA/ NOAA Partnership

- NOAA provides JPSS-2 satellite for accommodation of RBI
- NASA provides RBI instrument and support through spacecraft I&T and launch/activation
- NASA funds radiation budget science data analysis and generation of science products (RBM Project)

#### NASA Langley


- Manages prime contractor development of RBI instrument, provides management, technical, and mission assurance insight and oversight; provides support to spacecraft I&T thru launch and early on-orbit checkout (thru Phase D)
- Hand-over and release of RBI instrument ownership by RBI
   Project occurs at the JPSS-2 Operational Hand-over Review (OHR).
   For Phase E, the Langley Science Directorate (SD) Radiation
   Budget Measurement (RBM) Project assumes responsibility for
   RBI for mission planning and operations

#### Harris Corp.

- RBI Instrument provider/prime contractor with subcontractors providing key elements and support (SDL for Calibration, JPL for Thermopile Detectors, Sierra Nevada for Azimuth Rotation Module)
- JPSS-2 Spacecraft and Mission Interface
- -- Interface Control (ICD & MICD) and Data Format

## RBI scanning radiometer measuring three spectral bands at top of Atmosphere (TOA)

- Total 0.3 to > 50+ μm
- Shortwave 0.3 to 5.0 μm
- Longwave 5.0 to 50+  $\mu m$



#### **Science Goal**

- To <u>continue</u> the measurements from the last two decades in support of global climate monitoring.
- RBI <u>extends</u> the Earth radiation budget measurements of the Earth Observing System (EOS) and Joint Polar Satellite System (JPSS)
- Phase: Formulation (C)
- Risk: 7120.5E, Category 2; 8705.4 Payload Risk Class B
- Flight Instrument Delivery: March 2019
- JPPS-2 On-dock Delivery Date: April 2019
- Life: 7 years

**RBI is a CERES Data Continuity Mission** 



## **Partnerships and Teams**



Radiation Budget Instrument









GENERAL DYNAMICS
Global Imaging Technologies



## **RBI Baseline and Threshold Requirements**



#### **Radiation Budget Instrument**

| Key Performance Requirements                    | Baseline Science Requirements                          | Threshold Science Requirements                |
|-------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|
| Total Spectral Range                            | 0.3 to 100+ microns                                    | 0.3 to 50+ microns                            |
| Shortwave Spectral Range                        | 0.3 to 5 microns                                       | 0.3 to 5 microns                              |
| Longwave Spectral Range                         | 5 to 50+ microns                                       | 5 to 35+ microns                              |
| Total Channel Absolute Radiometric Accuracy     | ≤ Larger of 0.575 W/m <sup>2</sup> -sr or 0.5% (k = 1) | ≤ Larger of 0.575 W/m²-sr or 0.75% (k = 1)    |
| Shortwave Channel Absolute Radiometric Accuracy | ≤ Larger of 0.75 W/m²-sr or 1.0% (k = 1)               | ≤ Larger of 0.75 W/m²-sr or 1.25% (k = 1)     |
| Longwave Channel Absolute Radiometric Accuracy  | ≤ Larger of 0.575 W/m <sup>2</sup> -sr or 0.5% (k = 1) | ≤ Larger of 0.575 W/m²-sr or<br>0.75% (k = 1) |
| Total Channel Radiometric Precision             | ≤ 0.2 W/m²-sr + 0.1% (k = 3)                           | ≤ 0.2 W/m <sup>2</sup> -sr + 0.1% (k = 2)     |
| Shortwave Channel Radiometric Precision         | ≤ 0.2 W/m²-sr + 0.1% (k = 3)                           | ≤ 0.2 W/m <sup>2</sup> -sr + 0.1% (k = 2)     |
| Longwave Channel Radiometric Precision          | ≤ 0.2 W/m²-sr + 0.1% (k = 3)                           | ≤ 0.2 W/m <sup>2</sup> -sr + 0.1% (k = 2)     |
| Total Channel Linearity                         | ≤ 1.5 W/m²-sr                                          | ≤ 2.5 W/m²-sr                                 |
| Shortwave Channel Linearity                     | ≤ 1.28 W/m²-sr                                         | ≤ 2.13 W/m²-sr                                |
| Longwave Channel Linearity                      | ≤ 0.54 W/m <sup>2</sup> -sr                            | ≤ 0.9 W/m²-sr                                 |
| Point Spread Function                           | Within 95% of CERES                                    | Within 90% of CERES                           |

RBI Baseline Science Requirements Match CERES



# RBI Accommodated on JPSS-2 Spacecraft Nadir Deck



**Radiation Budget Instrument** 

# RBI

+ Z (Nadir)

#### **JPSS-2 Instrument Complement**

- Radiation Budget Instrument (RBI)
- Advanced Technology Microwave Sounder (ATMS)
- Cross-track Infrared Sounder (CrIS)
- Visible Infrared Imagining Radiometer Suite (VIIRS)
- Ozone Mapping and Profiler Suite (OMPS)

#### **JPSS-2 Observatory**

- •Nominal Altitude: 824 km  $\pm$  17 km
- •Ground Track Repeatability Accuracy:  $\pm 20$  km at the equator
- •Ground Track Repeat Cycle: <20 days
- •Nominal Ascending Equator Crossing Time: 1330 (local time)  $\pm$  10 min

+ X (Velocity)

Spacecraft design and Instrument locations are notional and representative of JPSS-1 JPSS-2 configuration has not been determined



## **Instrument Overview**



- **♦ Instrument Design Overview** 
  - Instrument Features
  - ConOps Overview
  - Module Overviews
- ◆ Performance Overview
- **◆** Engineering Development Unit Overview



# **Science and Continuity Drive Key Features of RBI Design**



Radiation Budget Instrument

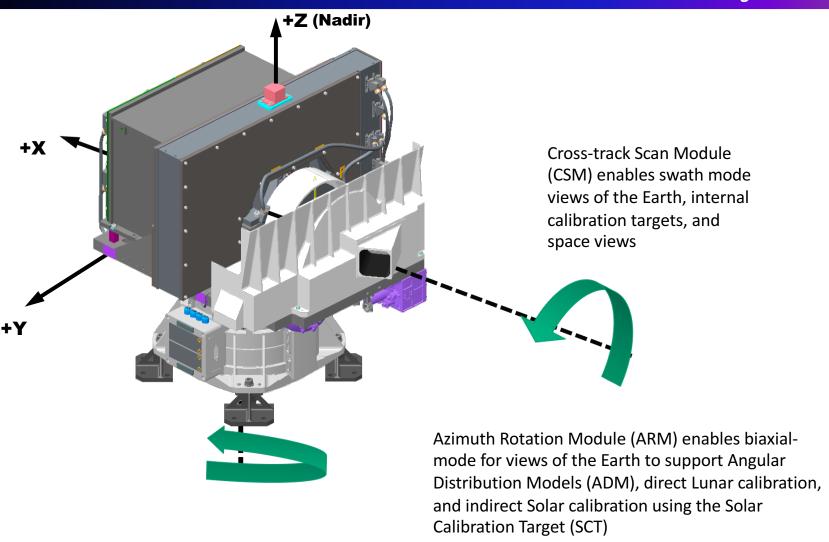
| RBI Science Needs                                    | RBI Design Feature to Fulfill Science Need                                                                                      |  |  |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|
| Low Shortwave Radiometric Uncertainty                | <b>VCT</b> containing Electrical Substitution Radiometer (ESR) provides stable SW reference radiance over life                  |  |  |
|                                                      | •                                                                                                                               |  |  |
| Low Total and Longwave Radiometric Uncertainty       | Heated high-emissivity <i>ICT</i> with well-calibrated temperature sensors provide on-orbit reference for Total and LW channels |  |  |
| Accurate Knowledge of Relative                       | 6-diode <i>VCT</i> provides multispectral RSR characterization with                                                             |  |  |
| Spectral Response Over Life                          | absolute stability provided by the ESR                                                                                          |  |  |
| Radiometric Calibration Consistency Between Channels | All channels view the same <b>VCT</b> , <b>ICT</b> and <b>SCT</b> .                                                             |  |  |
| Stable Radiometric Response                          | Effective temperature stability of telescope and detectors                                                                      |  |  |
| Point Spread Function (PSF)                          | RBI uses an IFOV size/shape and scan rate that are nearly                                                                       |  |  |
| <b>Closely Matches Heritage CERES</b>                | identical to heritage CERES. PSF closely matches CERES.                                                                         |  |  |
| Radiometric Verification Via Solar                   | <b>SCT</b> containing multiple Spectralon surfaces. Pristine surfaces                                                           |  |  |
| Calibration                                          | are used to detect degradation of primary surface.                                                                              |  |  |
| <b>Multiple Observation Modes</b>                    | 3 telescopes (one for each band) provide best operational                                                                       |  |  |
| (crosstrack, bi-axial, user defined)                 | flexibility and continuity. Uploadable scan pattern.                                                                            |  |  |
| Reliable Science Data                                | Completely redundant instrument, including detectors and electronics                                                            |  |  |

VCT = Visible Calibration TargetICT = Infrared Calibration Target

**SCT** = Solar Calibration Target



## **RBI ConOps Provides Operational Flexibility**

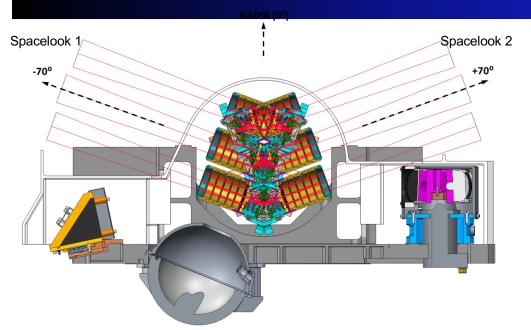


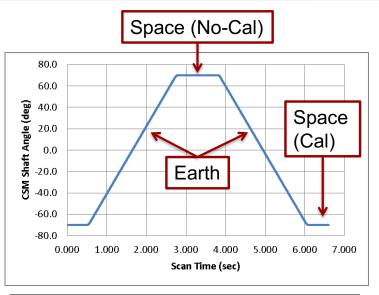

- Earth observations: Crosstrack and Biaxial scanning
- Calibration
  - Every scan line: space look
  - Daily: single point gain response using VCT and ICT
  - Monthly
    - Spectral calibration using VCT
    - Linearity measurement using VCT and ICT
- User-defined modes for operational flexibility
  - Earth target for validation campaigns
    - Includes cross-correlations with CERES by viewing the same earth location
  - Solar observations via diffuse target
  - Lunar observations

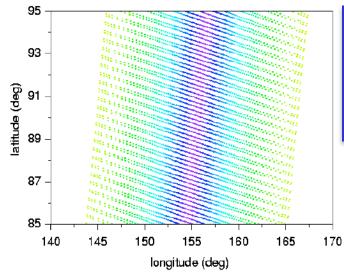


# Field of Regard Obtained by Mounting Orientation & Two-Axis Pointing

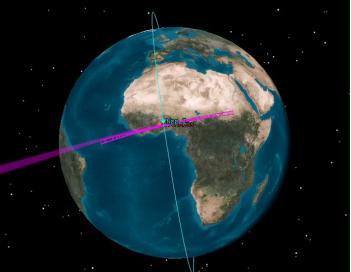






## **Cross-Track Scan is Primary Operational Mode**



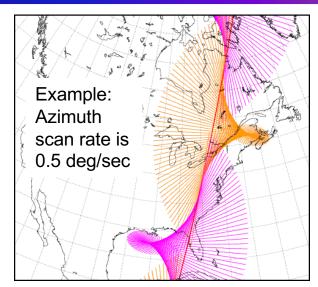

#### Radiation Budget Instrument

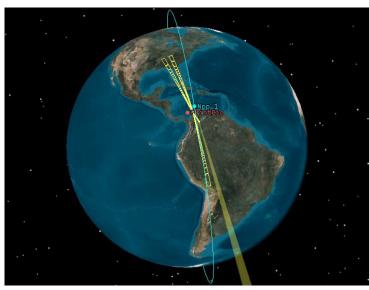






Constant 63.1 deg/sec rate over full Earth; 6.6-sec cycle time

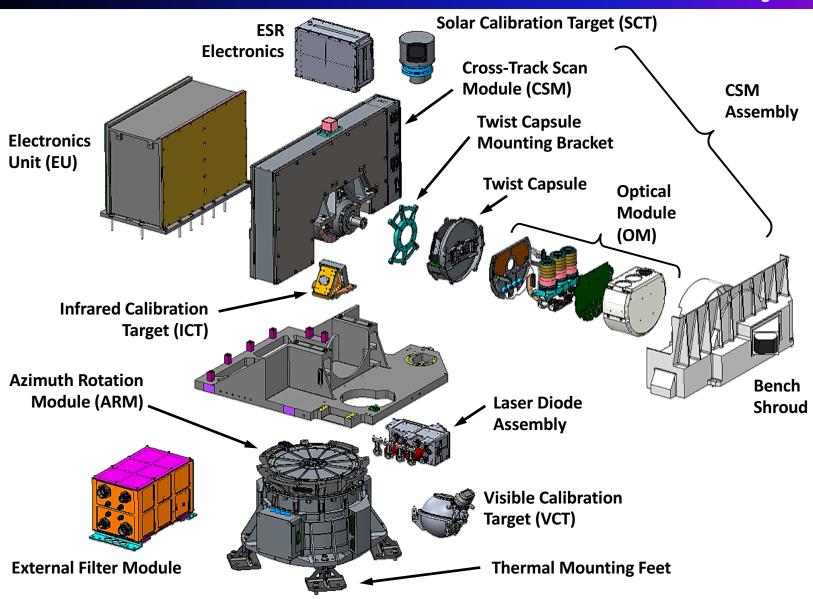



# Bi-Axial Scan Mode Supports Refinement of Angular Distribution Models



- During a Bi-axial scan the instrument is commanded to rotate both the azimuth and Elevation gimbals
  - Data is used to validate and refine Angular Distribution Models used to convert RBI radiances into fluxes at top of atmosphere
- Elevation scan rate is 63.1 deg/sec
   with a +/- 70 deg rotation
- Azimuth scan rate is 0.5 to 6.0 deg/sec with a +/-90 deg rotation
- Azimuth scan rate and rotation are commanded from ground

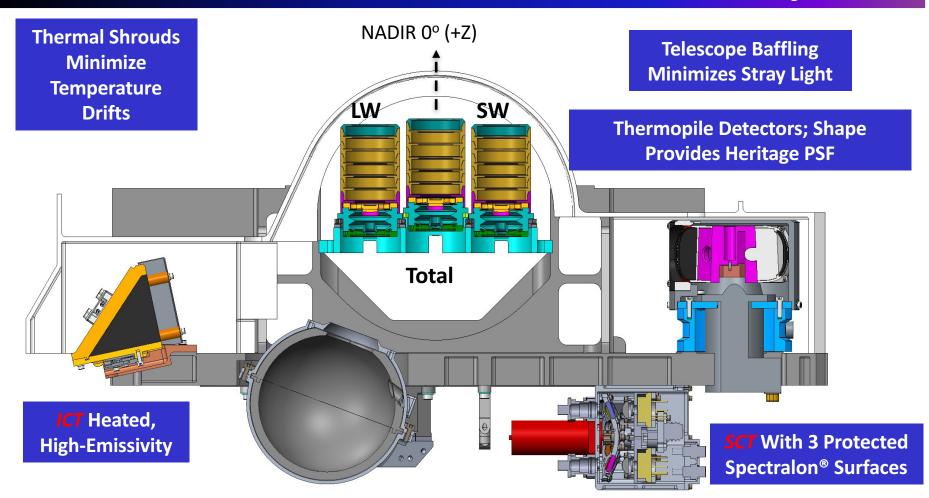







## **Modular Design Simplifies Integration**



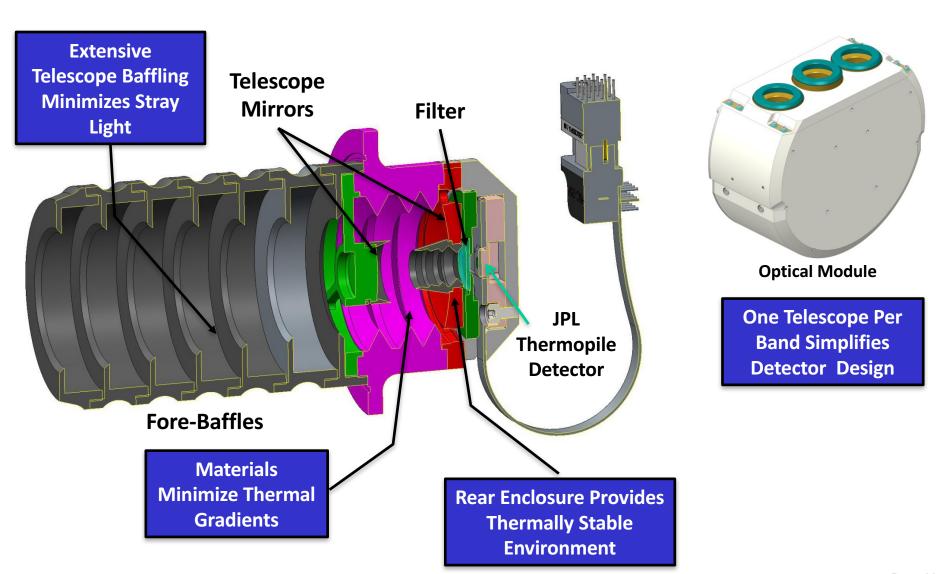





## Optical Modules and Targets Designed for Maximum Stability and Accuracy



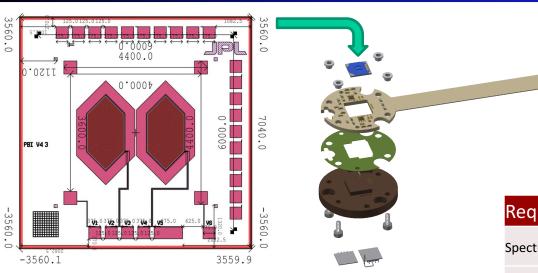
Radiation Budget Instrument




**VCT** With 6-Wavelength Radiance Output and ESR for Absolute Reference



# Optical Module Controls Stray Light While Providing a Stable Thermal Environment





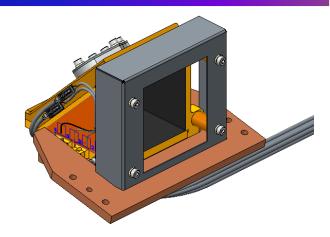


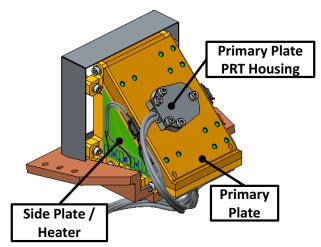

# JPL Thermopile Detectors Enable Data Continuity with CERES





- Uncooled thermopile detectors with Gold-Black coating are responsive over the full RBI spectral range from UV to far-infrared
  - Scene radiance is measured by detecting small changes in temperature of the detector material
- Detectors are highly linear, stable, low noise, and fully redundant
- Heritage: MCS/Diviner (15 years of flight ops)


| Requirement                  | Value                              | Compliance |
|------------------------------|------------------------------------|------------|
| Spectral Response            | Specified over 0.2-<br>100 microns | Yes        |
| Dynamic Range                | 0-600 W/m <sup>2</sup> /sr         | Yes        |
| Gain                         | 22,000V/W +/-10%                   | Yes        |
| Gain Temp Coefficient        | <220V/W/K                          | Yes        |
| Reliability (glint survival) | 3.81 mW, 30 times                  | Yes        |
| Non-linearity                | <u>&lt;</u> 0.04%                  | Yes        |
| Response Uniformity          | +/-5% 3x 75um spot                 | Yes        |
| Out of field response        | <b>≤</b> 0.01%                     | Yes        |
| Noise Equivalent Power       | <u>&lt;</u> 3 nW                   | Yes        |
| Time constant max            | <9.0 msec                          | Yes        |
| Time constant min            | <u>&gt;</u> 7.5 msec               | Yes        |
| Output Stability             | <0.5nW for 6.6 sec                 | Yes        |

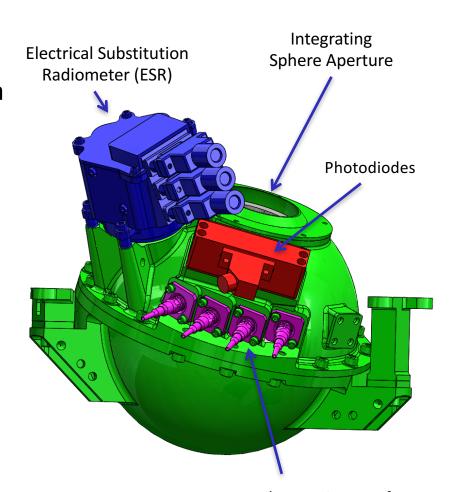



## ICT is a Thermal Infrared Radiance Source for Precise Calibration



- Provides IR calibration source for LW and Total channels
- Harris-patented Specular Trap design provides >0.995 emissivity in a compact, easy to manufacture package
- ◆ PRTs are carefully calibrated to NIST standard on the ground prior to installation
- Heaters enable linearity measurements while on-orbit
- Beryllium minimizes thermal gradients
- ◆ Flight heritage design from CrIS and AHI-8







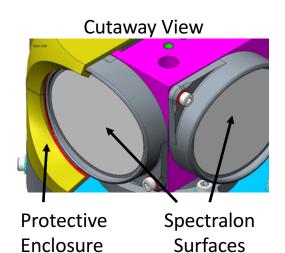

## Visible Calibration Target Provides Reflected Solar Band Calibration Standard



- VCT provides 6 laser diode sources
  - 375, 405, 445, 690, 915, 1470 nm
  - Radiometric calibration uses 915nm laser only
  - RSR characterization uses all 6 wavelengths sequentially
- Si and InGaAs photodiodes provide short-term radiance reference
- ESR provides stable absolute radiance traceable to NIST
  - Used monthly to calibrate photodiodes and SW / Total channels
- Laser diodes are remotely located, fiber coupled, providing thermal stability of diodes and sphere



Fiber Optic Ports for Laser Illumination Input

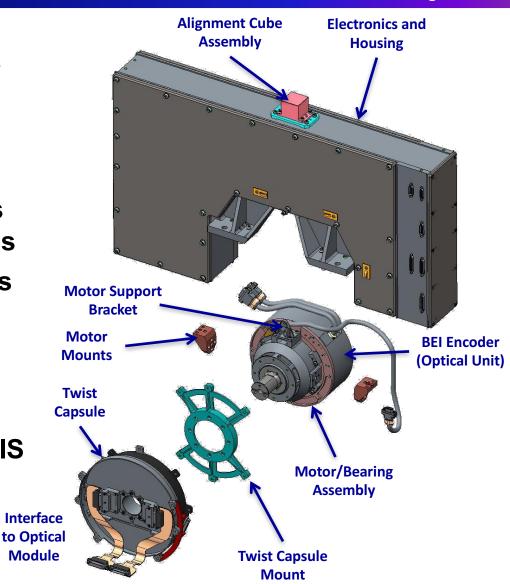



# Solar Cal Target Provides Additional Independent Check of SW/Total Calibration



- SCT contains three protected Spectralon® solar diffusers for on-orbit calibration checks
  - Targets are in a cube orientation within a sealed enclosure, which protects them from solar degradation
  - At least one surface can be maintained in a pristine condition to track and correct for changes in the "daily" surface
  - The 4th face blocks incoming solar radiation and contamination when the SCT not in use
- SCT mechanism is space-qualified
- Proven Spectralon® solar diffuser material, also used by ABI, AHI, COMS, and GOSAT programs





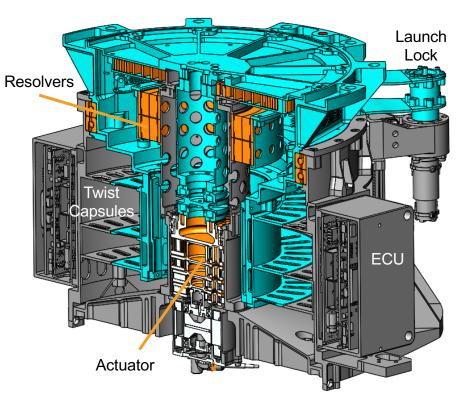



# CSM Provides Low-Jitter Cross-Track Scanning of Optical Module



- Designs leverage heritage motor/ encoder designs
- Design optimizes OM thermal performance
- Twist flex design provides redundant OM connections
- H infinity control optimizes response and provides robustness to external disturbances
- Heritage bearing system has proven long life on CrlS






# **Azimuth Rotation Module Provides Reliable Bi-Axial Scan Capability**



Radiation Budget Instrument

- Provides azimuth rotation of upper half of instrument
  - Rate of 0.5-6.0 deg/sec
- Open-loop stepping system with simple and reliable control process
- Resolver feedback in telemetry provides confirmation of positioning
- Leverages many assemblies with flight heritage
  - Gearbox, resolvers, hybrid stepper motor, Electronic Control Unit, launch lock



Gray = Stationary (Tied to Spacecraft)

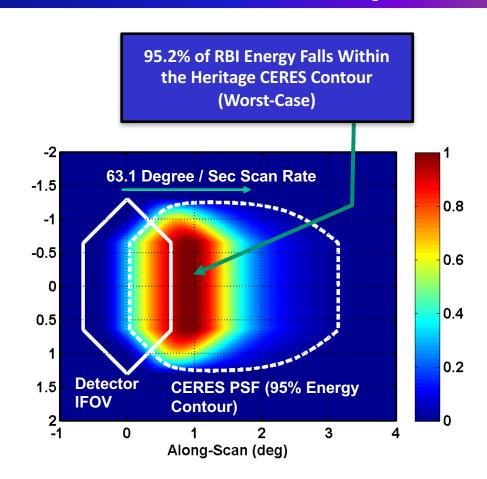
**Blue = Rotating With RBI Bench** 

**Orange = Combination** 



## **Instrument Overview**




- Instrument Design Overview
  - Instrument Features
  - ConOps Overview
  - Module Overviews
- **♦ Performance Overview**
- **◆** Engineering Development Unit Overview



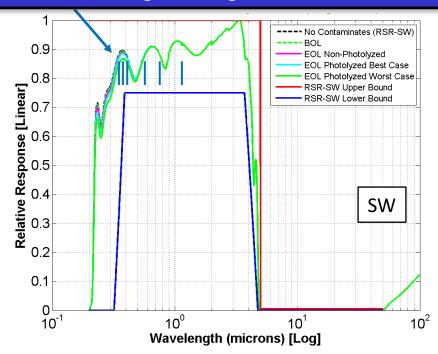
# CERES-Like Point Spread Function (PSF) Provides Important Data Continuity

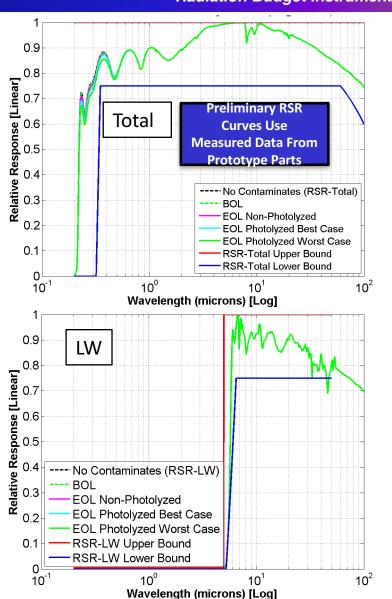


- RBI detector shape mimics the CERES precision aperture, and heritage scan rate and time constant provides best PSF match
- ◆ RBI PSF is required to be smaller than CERES, referenced to 95% energy contour
  - i.e., over 95% of RBI energy must be within the CERES 95% energy contour
- Close match to CERES PSF enhances data continuity





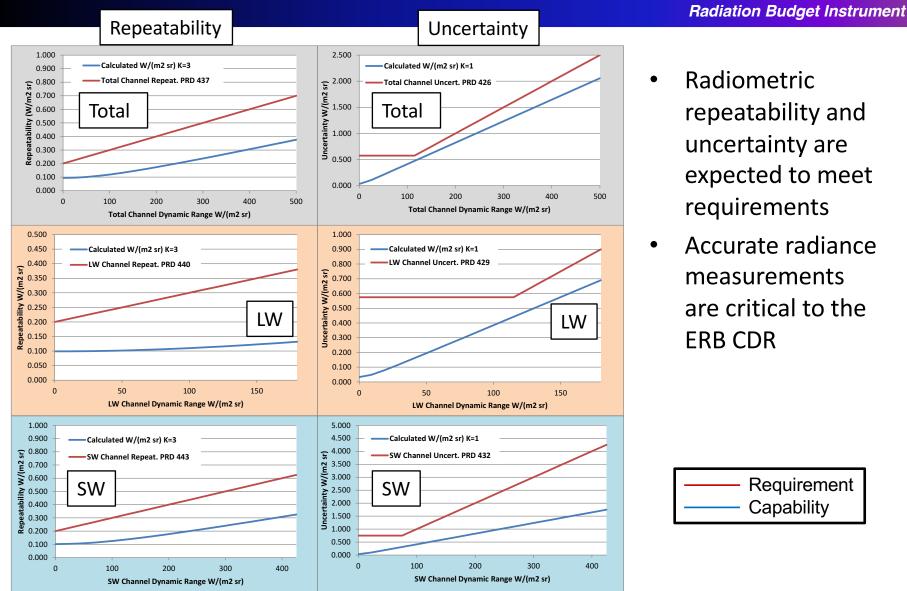

## **Knowledge of Relative Spectral Response Ensures Accurate Observations**




#### Radiation Budget Instrument

- VCT detects changes in Relative Spectral Response (RSR) over life allowing corrections to be implemented
- SCT can also support corrections

VCT Measures Responsivity Changes at 6 Wavelengths,
Allowing RSR Changes to Be Corrected








# Radiometric Performance Expected to Meet Requirements







## **RBI Expected to Satisfy Science Requirements**



| Key Performance Requirements                       | Baseline Science Requirements             | Predicted RBI Capability      |
|----------------------------------------------------|-------------------------------------------|-------------------------------|
| Total Spectral Range                               | 0.3 to 100+ microns                       | 0.3 to 100 microns            |
| Shortwave Spectral Range                           | 0.3 to 5 microns                          | 0.3 to 5 microns              |
| Longwave Spectral Range                            | 5 to 50+ microns                          | 5 to 50 microns               |
| Total Channel Absolute Radiometric Uncertainty     | ≤ Larger of 0.575 W/m²-sr or 0.5% (k = 1) | Compliant– See Previous Page  |
| Shortwave Channel Absolute Radiometric Uncertainty | ≤ Larger of 0.75 W/m²-sr or 1.0% (k = 1)  | Compliant– See Previous Page  |
| Longwave Channel Absolute Radiometric Uncertainty  | ≤ Larger of 0.575 W/m²-sr or 0.5% (k = 1) | Compliant– See Previous Page  |
| Total Channel Radiometric Repeatability            | ≤ 0.2 W/m²-sr + 0.1% (k = 3)              | Compliant– See Previous Page  |
| Shortwave Channel Radiometric Repeatability        | ≤ 0.2 W/m²-sr + 0.1% (k = 3)              | Compliant – See Previous Page |
| Longwave Channel Radiometric Repeatability         | ≤ 0.2 W/m²-sr + 0.1% (k = 3)              | Compliant – See Previous Page |
| Total Channel Linearity                            | ≤ 1.5 W/m²-sr                             | 0.5 W/m²-sr                   |
| Shortwave Channel Linearity                        | ≤ 1.28 W/m²-sr                            | 0.43 W/m <sup>2</sup> -sr     |
| Longwave Channel Linearity                         | ≤ 0.54 W/m²-sr                            | 0.18 W/m <sup>2</sup> -sr     |
| Point Spread Function                              | <u>&gt;</u> 95% of CERES                  | 95.2% of CERES, Worst Case    |



### **Instrument Overview**



- Instrument Design Overview
  - Instrument Features
  - ConOps Overview
  - Changes Since SRR
  - Module Overviews
- ◆ Performance Overview
- **◆ Engineering Development Unit Overview**



## **Engineering Development Unit**



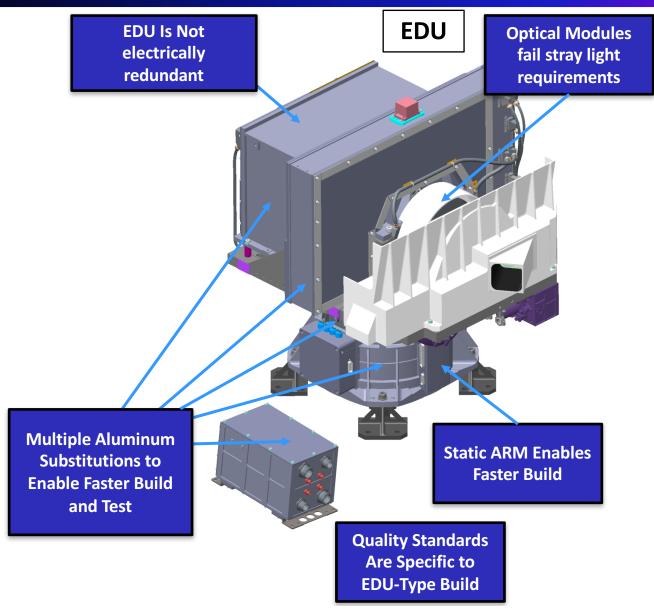
Radiation Budget Instrument

#### ◆ EDU is a pathfinder for calibration

- Design is quite similar to RBI flight design
- Manufacturing processes are validated
- Radiometric performance requirements are demonstrated
- Calibration approach is demonstrated

#### EDU is a pathfinder for test execution

- "Dry Run" of the Flight pre-launch calibration campaign
- Limited environmental tests bring confidence to design robustness


#### ◆ EDU TVAC Testing Scheduled for Summer 2017

Provides first opportunity to correlate end-to-end radiometric model



## **EDU** is a Representation of Flight Design





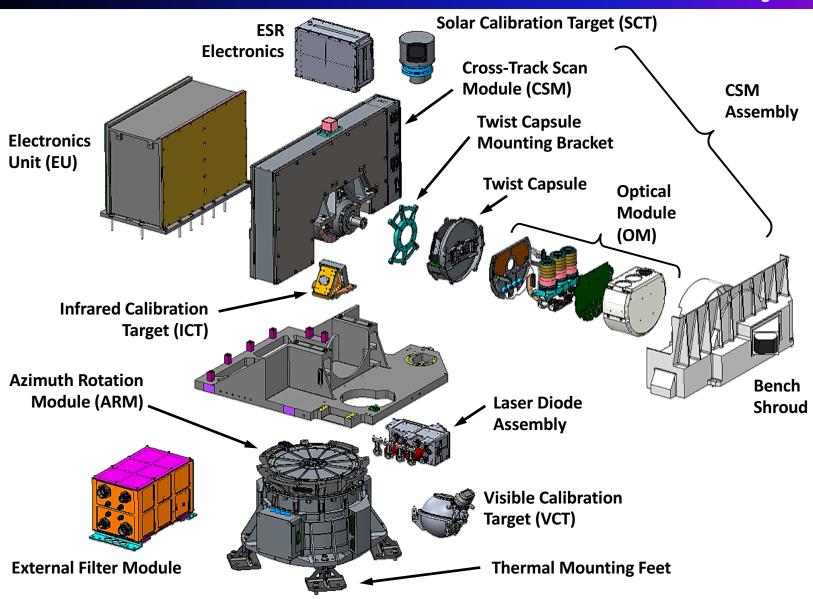


## **Summary**



- RBI design is optimized for its mission
- RBI provides valuable data continuity with CERES
- Operations are highly flexible to support science needs
- Design utilizes heritage sub-assemblies to minimize development risk and schedule
- Performance expected to meet requirements
- ◆ RTM and EDU provide early risk mitigation




## Back-Up





## **Modular Design Simplifies Integration**

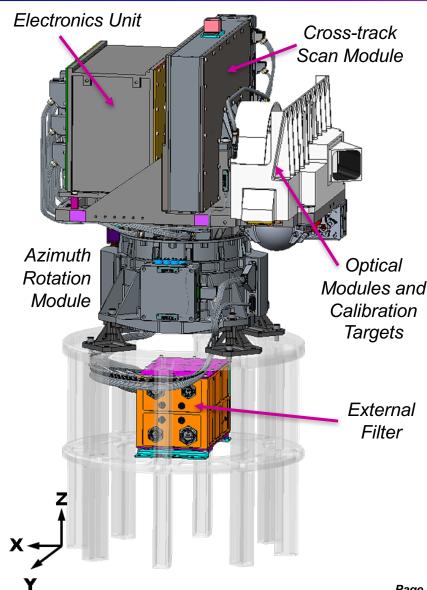






## **Instrument Design Addresses Mission Needs**




- ◆ Design features maximize mission performance
  - Stable thermal environment
  - Comprehensive suite of calibration targets
  - High-performance detectors
  - Flexible operational strategy
  - PSF closely matched to CERES for best data continuity
- ◆ Design uses flight heritage, as able, to reduce development risk



## Radiation Budget Instrument is Designed to Meet Mission Needs



- Measures upwelling earth radiance over a wide spectral range
  - Ultraviolet to far-infrared (100um)
  - Continuous cross-track scans
- Three spectral bands
  - Shortwave (SW): reflected solar energy
  - Longwave (LW): emitted earth energy
  - Total: reflected solar plus emitted thermal energy
- Very precise calibration
  - Extensive ground calibration program establishes radiometric traceability
  - Multiple onboard targets hold calibration over mission life

